Agenda

1. Why do we have Structural/Mechanical Engineers (in Research)?

2. Design, Build and Test a model bridge.

Build a Bridge

Post 630 Starting Point

To build an Airplane

Wings/Control Surfaces!

Structures

Engines

Classical Truss Bridge

More Common Use of Structures

Aerospace Bridge

Buran Structure

Wing structure

Volvo Structure

Structural Models

Using your 'noodles' contest:)

Rules

- -Enter one structure per 2 person team to the competition.
- -Spend up to \$7.5 for material (receipt req'd).
- All parts must be edible (Food Grade)
- Must fit onto test rig

Size Requirement (Side View)

Load shall be hung from the TOP

Size Requirement (Top View)

Bridge Testing Rig

Rating Sheet Team

Name:

1 - 5
1 - 5
weight held/Weight tructure/Averaged
e) + Aesthetics/ verage Value + tion/Average Values
L

Things to Talk about

□Team Roles?
□What to build?
□How to build?
□Who brings what?
□Develop a team process!
□Remember the time constraints (~2 hours)
□Plan/Discuss a head of time.. Otherwise,
you'll building a bridge with what we have in
the office

Remember the rule: we may require you to demonstrate that material is edible!

Forces in a simple Truss

• Tensile forces tend to lengthen a member

• Compressive forces tend to shorten or compress a member

Bridge types

• Girder

• Truss

• Rigid Frame

Bridge types (continued)

• Arch

Cable Stayed

Suspension

Common Forms of Failure

- Buckling or crushing for members in compression
- Pulling apart in the middle for members in tension
- Pulling apart at the joints

Materials Supplied by the Advisors

- Building Mats/Hobby Knife/Scissor
- Paper for Drawing
- Test Rig
- Advice
- Encouragement

- ☐ Why did some hold more load than others ?
- ☐ But they looked different?
- ☐ Why did you build your bridge way you did?
- ☐ What do you think you need to know before you build a better bridge?

Reference

Bridge Sites

How Bridges Work

Bridge Components

- Deck
- Pier
- Span
- Abutment

Bridge Build

YF-12A

